

Grosseto O

Scheda tecnica

Materiale	Acciaio al carbonio					
Tubi - mm	20x20x1,5					
Collettori - Ø	30x1,5					
Connessioni	4x1/2*					
Fissaggi a muro	4					
Pressione max d'esercizio	4 bar					
Temperatura max d'esercizio	95°					
Verniciatura	a polveri epossipoliestere					
Imballo	scatola e protezioni interne in cartone					
	+ foglio di polietilene espanso					
* attacco per la valvola di sfiato, incluso						

Dotazione di serie: 1 kit di fissaggi a muro - 1 valvola di sfiato - 1 tappo cieco - 2 coperture cromate per tappo cieco e valvola di sfiato

Bianco RAL 9016

cod.	altezza (mm)	larghezza (mm)	interasse (mm)	peso (kg)	contenuto d'acqua (lt)	watt ∆⊺50°C	watt ∆⊺30°C	watt ∆⊺ 42,5°C	btu ∆T 60°C	Δτ 50° C esponente n
383825	1157	506	470	11,9	4,4	500	261	407	2157	1,28
383826	1742	506	470	18,5	6,6	757	394	615	3262	1,28

Cromato

cod.	altezza (mm)	larghezza (mm)	interasse (mm)	peso (kg)	contenuto d'acqua (lt)	watt ∆T 50°C	watt ∆⊺30°C	watt ∆⊺ 42,5°C	btu ∆T 60°C	Δτ 50° C esponente n
383827	1157	506	470	11,9	4,4	358	187	291	1546	1,28
383828	1742	506	470	18.5	6.6	571	297	464	2464	1.28

I radiatori vengono testati presso laboratori accreditati secondo la norma EN-442 che determina la resa nominale fissando un ΔT a 50° C. Il ΔT è la differenza tra la temperatura media dell'acqua all'interno del radiatore e la temperatura dell'ambiente e viene calcolato con la seguente formula: $(((T_1+T_2)/2)-T_3)$, es: $((75+65/2)-20)=50^\circ$ C. Per ottenere il valore della resa termica con un $\Delta \tau$ diverso, può essere utilizzata la seguente formula: $\phi_x = \phi_{\Delta \tau 50}^{}^{}^{} (\Delta \tau_x / 50)^n$.

Di seguito un esempio per calcolare la resa con ΔT 60° del codice 383825: 500*(60/50)128= 632.

Per ottenere il valore in kcal/h, moltiplicare la resa in watt per 0,85984. Per ottenere il valore in btu, moltiplicare la resa in watt per 3,412.

 T_1 = temperatura di mandata - T_2 = temperatura di ritorno - T_3 = temperatura ambiente. ϕ_x = resa da calcolare - $\phi_{\Delta\tau 50}$ = resa a $\Delta\tau$ 50° C (tabella) - $\Delta\tau_x$ = valore di $\Delta\tau$ da calcolare - n = esponente "n" (tabella).